Summarize a parameter table from a modsem model.
      summarize_partable.RdSummarize a parameter table from a modsem model.
Usage
summarize_partable(
  parTable,
  scientific = FALSE,
  ci = FALSE,
  digits = 3,
  loadings = TRUE,
  regressions = TRUE,
  covariances = TRUE,
  intercepts = TRUE,
  variances = TRUE
)Arguments
- parTable
 A parameter table, typically obtained from a
modsemmodel usingparameter_estimatesorstandardized_estimates.- scientific
 Logical, whether to print p-values in scientific notation.
- ci
 Logical, whether to include confidence intervals in the output.
- digits
 Integer, number of digits to round the estimates to (default is 3).
- loadings
 Logical, whether to include factor loadings in the output.
- regressions
 Logical, whether to include regression coefficients in the output.
- covariances
 Logical, whether to include covariance estimates in the output.
- intercepts
 Logical, whether to include intercepts in the output.
- variances
 Logical, whether to include variance estimates in the output.
Examples
m1 <- '
  # Outer Model
  X =~ x1 + x2 + x3
  Z =~ z1 + z2 + z3
  Y =~ y1 + y2 + y3
  # Inner Model
  Y ~ X + Z + X:Z
'
# Double centering approach
est_dca <- modsem(m1, oneInt)
std <- standardized_estimates(est_dca, correction = TRUE)
summarize_partable(std)
#> modsem (version 1.0.14)
#> 
#>   Number of model parameters                        64
#>   Number of latent variables                         4
#>   Number of observed variables                      18
#>  
#> Latent Variables:
#>                  Estimate  Std.Error  z.value  P(>|z|)
#>   X =~          
#>     x1              0.927      0.005  197.805    0.000
#>     x2              0.892      0.006  156.888    0.000
#>     x3              0.914      0.005  180.631    0.000
#>   Z =~          
#>     z1              0.926      0.005  197.375    0.000
#>     z2              0.899      0.005  164.838    0.000
#>     z3              0.913      0.005  180.409    0.000
#>   Y =~          
#>     y1              0.969      0.002  493.285    0.000
#>     y2              0.955      0.002  390.119    0.000
#>     y3              0.962      0.002  435.067    0.000
#>   XZ =~         
#>     x1z1            0.878      0.007  129.129    0.000
#>     x2z1            0.836      0.008  105.776    0.000
#>     x3z1            0.843      0.008  108.821    0.000
#>     x1z2            0.833      0.008  102.749    0.000
#>     x2z2            0.804      0.009   90.666    0.000
#>     x3z2            0.812      0.009   93.853    0.000
#>     x1z3            0.867      0.007  121.949    0.000
#>     x2z3            0.829      0.008  102.106    0.000
#>     x3z3            0.826      0.008  100.718    0.000
#> 
#> Regressions:
#>                  Estimate  Std.Error  z.value  P(>|z|)
#>   Y ~           
#>     X               0.424      0.016   26.787    0.000
#>     Z               0.358      0.016   22.372    0.000
#>     XZ              0.444      0.015   28.971    0.000
#> 
#> Covariances:
#>                  Estimate  Std.Error  z.value  P(>|z|)
#>  .x1z1 ~~       
#>    .x1z2            0.384      0.018   21.659    0.000
#>    .x1z3            0.393      0.019   20.928    0.000
#>    .x2z1            0.415      0.017   24.499    0.000
#>    .x3z1            0.440      0.017   25.573    0.000
#>  .x1z2 ~~       
#>    .x1z3            0.367      0.018   20.929    0.000
#>    .x2z2            0.486      0.014   33.698    0.000
#>    .x3z2            0.520      0.014   36.545    0.000
#>  .x1z3 ~~       
#>    .x2z3            0.450      0.016   28.177    0.000
#>    .x3z3            0.474      0.016   29.999    0.000
#>  .x2z1 ~~       
#>    .x2z2            0.510      0.014   35.404    0.000
#>    .x2z3            0.542      0.014   38.238    0.000
#>    .x3z1            0.370      0.016   22.694    0.000
#>  .x2z2 ~~       
#>    .x2z3            0.486      0.015   33.189    0.000
#>    .x3z2            0.456      0.014   31.605    0.000
#>  .x2z3 ~~       
#>    .x3z3            0.404      0.015   26.242    0.000
#>  .x3z1 ~~       
#>    .x3z2            0.464      0.015   30.577    0.000
#>    .x3z3            0.507      0.015   34.430    0.000
#>  .x3z2 ~~       
#>    .x3z3            0.464      0.015   31.361    0.000
#>   X ~~          
#>     Z               0.201      0.023    8.786    0.000
#>     XZ              0.016      0.025    0.628    0.530
#>   Z ~~          
#>     XZ              0.062      0.025    2.462    0.014
#> 
#> Variances:
#>                  Estimate  Std.Error  z.value  P(>|z|)
#>    .x1              0.140      0.009   16.115    0.000
#>    .x2              0.204      0.010   20.047    0.000
#>    .x3              0.165      0.009   17.875    0.000
#>    .z1              0.142      0.009   16.321    0.000
#>    .z2              0.191      0.010   19.481    0.000
#>    .z3              0.167      0.009   18.042    0.000
#>    .y1              0.060      0.004   15.807    0.000
#>    .y2              0.089      0.005   18.988    0.000
#>    .y3              0.075      0.004   17.723    0.000
#>    .x1z1            0.229      0.012   19.190    0.000
#>    .x2z1            0.301      0.013   22.788    0.000
#>    .x3z1            0.289      0.013   22.109    0.000
#>    .x1z2            0.306      0.014   22.696    0.000
#>    .x2z2            0.353      0.014   24.786    0.000
#>    .x3z2            0.341      0.014   24.264    0.000
#>    .x1z3            0.249      0.012   20.178    0.000
#>    .x2z3            0.313      0.013   23.291    0.000
#>    .x3z3            0.317      0.014   23.421    0.000
#>     X               1.000      0.000                  
#>     Z               1.000      0.000                  
#>    .Y               0.398      0.016   25.401    0.000
#>     XZ              1.049      0.000                  
#>