Skip to contents

Summarize a parameter table from a modsem model.

Usage

summarize_partable(
  parTable,
  scientific = FALSE,
  ci = FALSE,
  digits = 3,
  loadings = TRUE,
  regressions = TRUE,
  covariances = TRUE,
  intercepts = TRUE,
  variances = TRUE
)

Arguments

parTable

A parameter table, typically obtained from a modsem model using parameter_estimates or standardized_estimates.

scientific

Logical, whether to print p-values in scientific notation.

ci

Logical, whether to include confidence intervals in the output.

digits

Integer, number of digits to round the estimates to (default is 3).

loadings

Logical, whether to include factor loadings in the output.

regressions

Logical, whether to include regression coefficients in the output.

covariances

Logical, whether to include covariance estimates in the output.

intercepts

Logical, whether to include intercepts in the output.

variances

Logical, whether to include variance estimates in the output.

Value

A summary object containing the parameter table and additional information.

Examples

m1 <- '
  # Outer Model
  X =~ x1 + x2 + x3
  Z =~ z1 + z2 + z3
  Y =~ y1 + y2 + y3

  # Inner Model
  Y ~ X + Z + X:Z
'
# Double centering approach
est_dca <- modsem(m1, oneInt)

std <- standardized_estimates(est_dca, correction = TRUE)
summarize_partable(std)
#> modsem (version 1.0.11)
#> 
#>   Number of model parameters                         82
#>   Number of latent variables                          4
#>   Number of observed variables                       18
#>  
#> Latent Variables:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   X =~ 
#>     x1               0.927      0.005  197.805    0.000
#>     x2               0.892      0.006  156.888    0.000
#>     x3               0.914      0.005  180.631    0.000
#>   Z =~ 
#>     z1               0.926      0.005  197.375    0.000
#>     z2               0.899      0.005  164.838    0.000
#>     z3               0.913      0.005  180.409    0.000
#>   Y =~ 
#>     y1               0.969      0.002  493.285    0.000
#>     y2               0.955      0.002  390.119    0.000
#>     y3               0.962      0.002  435.067    0.000
#>   XZ =~ 
#>     x1z1             0.878      0.007  129.129    0.000
#>     x2z1             0.836      0.008  105.776    0.000
#>     x3z1             0.843      0.008  108.821    0.000
#>     x1z2             0.833      0.008  102.749    0.000
#>     x2z2             0.804      0.009   90.666    0.000
#>     x3z2             0.812      0.009   93.853    0.000
#>     x1z3             0.867      0.007  121.949    0.000
#>     x2z3             0.829      0.008  102.106    0.000
#>     x3z3             0.826      0.008  100.718    0.000
#> 
#> Regressions:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   Y ~ 
#>     X                0.424      0.016   26.787    0.000
#>     Z                0.358      0.016   22.372    0.000
#>     XZ               0.444      0.015   28.971    0.000
#> 
#> Covariances:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   x1z1 ~~ 
#>     x2z2             0.000      0.000                  
#>     x2z3             0.000      0.000                  
#>     x3z2             0.000      0.000                  
#>     x3z3             0.000      0.000                  
#>     x1z2             0.384      0.018   21.659    0.000
#>     x1z3             0.393      0.019   20.928    0.000
#>     x2z1             0.415      0.017   24.499    0.000
#>     x3z1             0.440      0.017   25.573    0.000
#>   x2z1 ~~ 
#>     x1z2             0.000      0.000                  
#>     x1z3             0.000      0.000                  
#>     x3z2             0.000      0.000                  
#>     x3z3             0.000      0.000                  
#>     x2z2             0.510      0.014   35.404    0.000
#>     x2z3             0.542      0.014   38.238    0.000
#>     x3z1             0.370      0.016   22.694    0.000
#>   x1z2 ~~ 
#>     x2z3             0.000      0.000                  
#>     x3z3             0.000      0.000                  
#>     x1z3             0.367      0.018   20.929    0.000
#>     x2z2             0.486      0.014   33.698    0.000
#>     x3z2             0.520      0.014   36.545    0.000
#>   x3z1 ~~ 
#>     x1z2             0.000      0.000                  
#>     x1z3             0.000      0.000                  
#>     x2z2             0.000      0.000                  
#>     x2z3             0.000      0.000                  
#>     x3z2             0.464      0.015   30.577    0.000
#>     x3z3             0.507      0.015   34.430    0.000
#>   x2z2 ~~ 
#>     x1z3             0.000      0.000                  
#>     x3z3             0.000      0.000                  
#>     x2z3             0.486      0.015   33.189    0.000
#>     x3z2             0.456      0.014   31.605    0.000
#>   x3z2 ~~ 
#>     x1z3             0.000      0.000                  
#>     x2z3             0.000      0.000                  
#>     x3z3             0.464      0.015   31.361    0.000
#>   x1z3 ~~ 
#>     x2z3             0.450      0.016   28.177    0.000
#>     x3z3             0.474      0.016   29.999    0.000
#>   x2z3 ~~ 
#>     x3z3             0.404      0.015   26.242    0.000
#>   X ~~ 
#>     Z                0.201      0.023    8.786    0.000
#>     XZ               0.016      0.025    0.628    0.530
#>   Z ~~ 
#>     XZ               0.062      0.025    2.462    0.014
#> 
#> Variances:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>     x1               0.140      0.009   16.115    0.000
#>     x2               0.204      0.010   20.047    0.000
#>     x3               0.165      0.009   17.875    0.000
#>     z1               0.142      0.009   16.321    0.000
#>     z2               0.191      0.010   19.481    0.000
#>     z3               0.167      0.009   18.042    0.000
#>     y1               0.060      0.004   15.807    0.000
#>     y2               0.089      0.005   18.988    0.000
#>     y3               0.075      0.004   17.723    0.000
#>     x1z1             0.229      0.012   19.190    0.000
#>     x2z1             0.301      0.013   22.788    0.000
#>     x3z1             0.289      0.013   22.109    0.000
#>     x1z2             0.306      0.014   22.696    0.000
#>     x2z2             0.353      0.014   24.786    0.000
#>     x3z2             0.341      0.014   24.264    0.000
#>     x1z3             0.249      0.012   20.178    0.000
#>     x2z3             0.313      0.013   23.291    0.000
#>     x3z3             0.317      0.014   23.421    0.000
#>     X                1.000      0.000                  
#>     Z                1.000      0.000                  
#>     Y                0.398      0.016   25.401    0.000
#>     XZ               1.049      0.000                  
#>