Skip to contents

The Latent Moderated Structural Equations (LMS) and the Quasi Maximum Likelihood (QML) Approach

Both the LMS and QML approaches work on most models, but interaction effects with endogenous variables can be tricky to estimate (see the vignette). Both approaches, particularly the LMS approach, are computationally intensive and are partially implemented in C++ (using Rcpp and RcppArmadillo). Additionally, starting parameters are estimated using the double-centering approach, and the means of the observed variables are used to generate good starting parameters for faster convergence. If you want to monitor the progress of the estimation process, you can use verbose = TRUE.

A Simple Example

Here is an example of the LMS approach for a simple model. By default, the summary() function calculates fit measures compared to a null model (i.e., the same model without an interaction term).

library(modsem)
m1 <- '
# Outer Model
  X =~ x1
  X =~ x2 + x3
  Z =~ z1 + z2 + z3
  Y =~ y1 + y2 + y3

# Inner Model
  Y ~ X + Z
  Y ~ X:Z
'

lms1 <- modsem(m1, oneInt, method = "lms")
summary(lms1, standardized = TRUE) # Standardized estimates
#> 
#> modsem (version 1.0.6):
#>   Estimator                                         LMS
#>   Optimization method                         EM-NLMINB
#>   Number of observations                           2000
#>   Number of iterations                               84
#>   Loglikelihood                               -14687.86
#>   Akaike (AIC)                                 29437.72
#>   Bayesian (BIC)                               29611.35
#>  
#> Numerical Integration:
#>   Points of integration (per dim)                    24
#>   Dimensions                                          1
#>   Total points of integration                        24
#>  
#> Fit Measures for H0:
#>   Loglikelihood                                  -17832
#>   Akaike (AIC)                                 35723.75
#>   Bayesian (BIC)                               35891.78
#>   Chi-square                                      17.52
#>   Degrees of Freedom (Chi-square)                    24
#>   P-value (Chi-square)                            0.826
#>   RMSEA                                           0.000
#>  
#> Comparative fit to H0 (no interaction effect)
#>   Loglikelihood change                          3144.01
#>   Difference test (D)                           6288.02
#>   Degrees of freedom (D)                              1
#>   P-value (D)                                     0.000
#>  
#> R-Squared:
#>   Y                                               0.596
#> R-Squared Null-Model (H0):
#>   Y                                               0.395
#> R-Squared Change:
#>   Y                                               0.201
#> 
#> Parameter Estimates:
#>   Coefficients                             standardized
#>   Information                                  expected
#>   Standard errors                              standard
#>  
#> Latent Variables:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   X =~ 
#>     x1               0.926                             
#>     x2               0.891      0.020    45.23    0.000
#>     x3               0.912      0.015    62.37    0.000
#>   Z =~ 
#>     z1               0.927                             
#>     z2               0.898      0.016    55.97    0.000
#>     z3               0.913      0.014    64.52    0.000
#>   Y =~ 
#>     y1               0.969                             
#>     y2               0.954      0.011    85.43    0.000
#>     y3               0.961      0.011    88.71    0.000
#> 
#> Regressions:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   Y ~ 
#>     X                0.427      0.025    17.21    0.000
#>     Z                0.370      0.025    14.98    0.000
#>     X:Z              0.453      0.020    22.46    0.000
#> 
#> Covariances:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   X ~~ 
#>     Z                0.199      0.032     6.27    0.000
#> 
#> Variances:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>     x1               0.142      0.009    15.38    0.000
#>     x2               0.206      0.010    19.89    0.000
#>     x3               0.169      0.009    19.18    0.000
#>     z1               0.141      0.008    16.74    0.000
#>     z2               0.193      0.011    17.18    0.000
#>     z3               0.167      0.009    18.54    0.000
#>     y1               0.061      0.004    16.78    0.000
#>     y2               0.090      0.005    20.01    0.000
#>     y3               0.077      0.004    18.39    0.000
#>     X                1.000      0.039    25.86    0.000
#>     Z                1.000      0.051    19.55    0.000
#>     Y                0.404      0.018    21.94    0.000

Here is the same example using the QML approach:

qml1 <- modsem(m1, oneInt, method = "qml")
summary(qml1)
#> 
#> modsem (version 1.0.6):
#>   Estimator                                         QML
#>   Optimization method                            NLMINB
#>   Number of observations                           2000
#>   Number of iterations                              109
#>   Loglikelihood                               -17496.22
#>   Akaike (AIC)                                 35054.43
#>   Bayesian (BIC)                               35228.06
#>  
#> Fit Measures for H0:
#>   Loglikelihood                                  -17832
#>   Akaike (AIC)                                 35723.75
#>   Bayesian (BIC)                               35891.78
#>   Chi-square                                      17.52
#>   Degrees of Freedom (Chi-square)                    24
#>   P-value (Chi-square)                            0.826
#>   RMSEA                                           0.000
#>  
#> Comparative fit to H0 (no interaction effect)
#>   Loglikelihood change                           335.66
#>   Difference test (D)                            671.32
#>   Degrees of freedom (D)                              1
#>   P-value (D)                                     0.000
#>  
#> R-Squared:
#>   Y                                               0.607
#> R-Squared Null-Model (H0):
#>   Y                                               0.395
#> R-Squared Change:
#>   Y                                               0.211
#> 
#> Parameter Estimates:
#>   Coefficients                           unstandardized
#>   Information                                  observed
#>   Standard errors                              standard
#>  
#> Latent Variables:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   X =~ 
#>     x1               1.000                             
#>     x2               0.803      0.013    63.96    0.000
#>     x3               0.914      0.013    67.79    0.000
#>   Z =~ 
#>     z1               1.000                             
#>     z2               0.810      0.012    65.12    0.000
#>     z3               0.881      0.013    67.62    0.000
#>   Y =~ 
#>     y1               1.000                             
#>     y2               0.798      0.007   107.58    0.000
#>     y3               0.899      0.008   112.55    0.000
#> 
#> Regressions:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   Y ~ 
#>     X                0.674      0.032    20.94    0.000
#>     Z                0.566      0.030    18.96    0.000
#>     X:Z              0.712      0.028    25.45    0.000
#> 
#> Intercepts:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>     x1               1.023      0.024    42.89    0.000
#>     x2               1.216      0.020    60.99    0.000
#>     x3               0.919      0.022    41.48    0.000
#>     z1               1.012      0.024    41.58    0.000
#>     z2               1.206      0.020    59.27    0.000
#>     z3               0.916      0.022    42.06    0.000
#>     y1               1.038      0.033    31.46    0.000
#>     y2               1.221      0.027    45.49    0.000
#>     y3               0.955      0.030    31.86    0.000
#>     Y                0.000                             
#>     X                0.000                             
#>     Z                0.000                             
#> 
#> Covariances:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   X ~~ 
#>     Z                0.200      0.024     8.24    0.000
#> 
#> Variances:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>     x1               0.158      0.009    18.14    0.000
#>     x2               0.162      0.007    23.19    0.000
#>     x3               0.165      0.008    20.82    0.000
#>     z1               0.166      0.009    18.34    0.000
#>     z2               0.159      0.007    22.62    0.000
#>     z3               0.158      0.008    20.71    0.000
#>     y1               0.159      0.009    17.98    0.000
#>     y2               0.154      0.007    22.67    0.000
#>     y3               0.164      0.008    20.71    0.000
#>     X                0.983      0.036    27.00    0.000
#>     Z                1.019      0.038    26.95    0.000
#>     Y                0.943      0.038    24.87    0.000

A More Complicated Example

Below is an example of a more complex model based on the theory of planned behavior (TPB), which includes two endogenous variables and an interaction between an endogenous and exogenous variable. When estimating more complex models with the LMS approach, it is recommended to increase the number of nodes used for numerical integration. By default, the number of nodes is set to 16, but this can be increased using the nodes argument. The nodes argument has no effect on the QML approach.

When there is an interaction effect between an endogenous and exogenous variable, it is recommended to use at least 32 nodes for the LMS approach. You can also obtain robust standard errors by setting robust.se = TRUE in the modsem() function.

Note: If you want the LMS approach to produce results as similar as possible to Mplus, you should increase the number of nodes (e.g., nodes = 100).

# ATT = Attitude
# PBC = Perceived Behavioral Control
# INT = Intention
# SN = Subjective Norms
# BEH = Behavior
tpb <- ' 
# Outer Model (Based on Hagger et al., 2007)
  ATT =~ att1 + att2 + att3 + att4 + att5
  SN =~ sn1 + sn2
  PBC =~ pbc1 + pbc2 + pbc3
  INT =~ int1 + int2 + int3
  BEH =~ b1 + b2

# Inner Model (Based on Steinmetz et al., 2011)
  INT ~ ATT + SN + PBC
  BEH ~ INT + PBC 
  BEH ~ INT:PBC  
'

lms2 <- modsem(tpb, TPB, method = "lms", nodes = 32)
summary(lms2)
#> 
#> modsem (version 1.0.6):
#>   Estimator                                         LMS
#>   Optimization method                         EM-NLMINB
#>   Number of observations                           2000
#>   Number of iterations                               64
#>   Loglikelihood                                -23439.2
#>   Akaike (AIC)                                 46986.41
#>   Bayesian (BIC)                               47288.85
#>  
#> Numerical Integration:
#>   Points of integration (per dim)                    32
#>   Dimensions                                          1
#>   Total points of integration                        32
#>  
#> Fit Measures for H0:
#>   Loglikelihood                                  -26393
#>   Akaike (AIC)                                 52892.45
#>   Bayesian (BIC)                               53189.29
#>   Chi-square                                      66.27
#>   Degrees of Freedom (Chi-square)                    82
#>   P-value (Chi-square)                            0.897
#>   RMSEA                                           0.000
#>  
#> Comparative fit to H0 (no interaction effect)
#>   Loglikelihood change                          2954.02
#>   Difference test (D)                           5908.04
#>   Degrees of freedom (D)                              1
#>   P-value (D)                                     0.000
#>  
#> R-Squared:
#>   INT                                             0.364
#>   BEH                                             0.259
#> R-Squared Null-Model (H0):
#>   INT                                             0.367
#>   BEH                                             0.210
#> R-Squared Change:
#>   INT                                            -0.003
#>   BEH                                             0.049
#> 
#> Parameter Estimates:
#>   Coefficients                           unstandardized
#>   Information                                  expected
#>   Standard errors                              standard
#>  
#> Latent Variables:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   PBC =~ 
#>     pbc1             1.000                             
#>     pbc2             0.914      0.016    56.88    0.000
#>     pbc3             0.802      0.019    42.46    0.000
#>   ATT =~ 
#>     att1             1.000                             
#>     att2             0.878      0.018    48.90    0.000
#>     att3             0.789      0.020    38.88    0.000
#>     att4             0.695      0.017    39.78    0.000
#>     att5             0.887      0.025    35.40    0.000
#>   SN =~ 
#>     sn1              1.000                             
#>     sn2              0.889      0.026    34.77    0.000
#>   INT =~ 
#>     int1             1.000                             
#>     int2             0.913      0.024    38.27    0.000
#>     int3             0.807      0.021    37.67    0.000
#>   BEH =~ 
#>     b1               1.000                             
#>     b2               0.959      0.053    18.16    0.000
#> 
#> Regressions:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   INT ~ 
#>     PBC              0.217      0.044     4.99    0.000
#>     ATT              0.214      0.045     4.70    0.000
#>     SN               0.176      0.037     4.76    0.000
#>   BEH ~ 
#>     PBC              0.233      0.034     6.89    0.000
#>     INT              0.188      0.034     5.54    0.000
#>     PBC:INT          0.205      0.028     7.26    0.000
#> 
#> Intercepts:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>     pbc1             0.991      0.033    29.69    0.000
#>     pbc2             0.978      0.031    31.84    0.000
#>     pbc3             0.986      0.026    37.25    0.000
#>     att1             1.009      0.035    28.79    0.000
#>     att2             1.003      0.028    36.28    0.000
#>     att3             1.013      0.026    39.12    0.000
#>     att4             0.996      0.024    41.35    0.000
#>     att5             0.988      0.029    34.35    0.000
#>     sn1              1.001      0.035    28.26    0.000
#>     sn2              1.006      0.032    31.06    0.000
#>     int1             1.011      0.025    40.02    0.000
#>     int2             1.009      0.028    35.44    0.000
#>     int3             1.003      0.024    42.07    0.000
#>     b1               0.999      0.022    44.65    0.000
#>     b2               1.017      0.025    40.83    0.000
#>     INT              0.000                             
#>     BEH              0.000                             
#>     PBC              0.000                             
#>     ATT              0.000                             
#>     SN               0.000                             
#> 
#> Covariances:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   PBC ~~ 
#>     ATT              0.668      0.048    13.93    0.000
#>     SN               0.668      0.047    14.09    0.000
#>   ATT ~~ 
#>     SN               0.623      0.050    12.46    0.000
#> 
#> Variances:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>     pbc1             0.148      0.012    12.55    0.000
#>     pbc2             0.159      0.010    15.80    0.000
#>     pbc3             0.155      0.010    16.29    0.000
#>     att1             0.167      0.010    16.68    0.000
#>     att2             0.150      0.009    17.13    0.000
#>     att3             0.159      0.009    18.03    0.000
#>     att4             0.162      0.008    20.20    0.000
#>     att5             0.159      0.010    16.69    0.000
#>     sn1              0.178      0.022     8.20    0.000
#>     sn2              0.156      0.016     9.89    0.000
#>     int1             0.157      0.011    13.91    0.000
#>     int2             0.160      0.011    14.28    0.000
#>     int3             0.168      0.010    17.38    0.000
#>     b1               0.185      0.036     5.11    0.000
#>     b2               0.136      0.028     4.82    0.000
#>     PBC              0.947      0.052    18.33    0.000
#>     ATT              0.992      0.063    15.66    0.000
#>     SN               0.981      0.060    16.35    0.000
#>     INT              0.491      0.029    16.94    0.000
#>     BEH              0.456      0.031    14.70    0.000

qml2 <- modsem(tpb, TPB, method = "qml")
summary(qml2, standardized = TRUE) # Standardized estimates
#> 
#> modsem (version 1.0.6):
#>   Estimator                                         QML
#>   Optimization method                            NLMINB
#>   Number of observations                           2000
#>   Number of iterations                               75
#>   Loglikelihood                               -26326.25
#>   Akaike (AIC)                                  52760.5
#>   Bayesian (BIC)                               53062.95
#>  
#> Fit Measures for H0:
#>   Loglikelihood                                  -26393
#>   Akaike (AIC)                                 52892.45
#>   Bayesian (BIC)                               53189.29
#>   Chi-square                                      66.27
#>   Degrees of Freedom (Chi-square)                    82
#>   P-value (Chi-square)                            0.897
#>   RMSEA                                           0.000
#>  
#> Comparative fit to H0 (no interaction effect)
#>   Loglikelihood change                            66.97
#>   Difference test (D)                            133.95
#>   Degrees of freedom (D)                              1
#>   P-value (D)                                     0.000
#>  
#> R-Squared:
#>   INT                                             0.366
#>   BEH                                             0.263
#> R-Squared Null-Model (H0):
#>   INT                                             0.367
#>   BEH                                             0.210
#> R-Squared Change:
#>   INT                                             0.000
#>   BEH                                             0.053
#> 
#> Parameter Estimates:
#>   Coefficients                             standardized
#>   Information                                  observed
#>   Standard errors                              standard
#>  
#> Latent Variables:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   PBC =~ 
#>     pbc1             0.933                             
#>     pbc2             0.913      0.013    69.47    0.000
#>     pbc3             0.894      0.014    66.10    0.000
#>   ATT =~ 
#>     att1             0.925                             
#>     att2             0.915      0.013    71.56    0.000
#>     att3             0.892      0.013    66.37    0.000
#>     att4             0.865      0.014    61.00    0.000
#>     att5             0.912      0.013    70.85    0.000
#>   SN =~ 
#>     sn1              0.921                             
#>     sn2              0.913      0.017    52.61    0.000
#>   INT =~ 
#>     int1             0.912                             
#>     int2             0.895      0.015    59.05    0.000
#>     int3             0.867      0.016    55.73    0.000
#>   BEH =~ 
#>     b1               0.877                             
#>     b2               0.900      0.028    31.71    0.000
#> 
#> Regressions:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   INT ~ 
#>     PBC              0.243      0.033     7.35    0.000
#>     ATT              0.242      0.030     8.16    0.000
#>     SN               0.199      0.031     6.37    0.000
#>   BEH ~ 
#>     PBC              0.289      0.028    10.37    0.000
#>     INT              0.212      0.028     7.69    0.000
#>     PBC:INT          0.227      0.020    11.33    0.000
#> 
#> Covariances:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>   PBC ~~ 
#>     ATT              0.692      0.030    23.45    0.000
#>     SN               0.695      0.030    23.07    0.000
#>   ATT ~~ 
#>     SN               0.634      0.029    21.70    0.000
#> 
#> Variances:
#>                   Estimate  Std.Error  z.value  P(>|z|)
#>     pbc1             0.130      0.007    18.39    0.000
#>     pbc2             0.166      0.008    21.43    0.000
#>     pbc3             0.201      0.008    23.89    0.000
#>     att1             0.144      0.006    23.53    0.000
#>     att2             0.164      0.007    24.71    0.000
#>     att3             0.204      0.008    26.38    0.000
#>     att4             0.252      0.009    27.64    0.000
#>     att5             0.168      0.007    24.93    0.000
#>     sn1              0.153      0.013    12.09    0.000
#>     sn2              0.167      0.013    13.26    0.000
#>     int1             0.168      0.009    18.11    0.000
#>     int2             0.199      0.010    20.41    0.000
#>     int3             0.249      0.011    23.55    0.000
#>     b1               0.231      0.023    10.12    0.000
#>     b2               0.191      0.024     8.11    0.000
#>     PBC              1.000      0.037    27.07    0.000
#>     ATT              1.000      0.037    26.93    0.000
#>     SN               1.000      0.040    25.22    0.000
#>     INT              0.634      0.026    24.64    0.000
#>     BEH              0.737      0.037    20.17    0.000