LMS and QML approaches
lms_qml.Rmd
The Latent Moderated Structural Equations (LMS) and the Quasi Maximum Likelihood (QML) Approach
Both the LMS
and QML
approaches work on
most models, but interaction effects with endogenous variables can be
tricky to estimate (see the vignette).
Both approaches, particularly the LMS
approach, are
computationally intensive and are partially implemented in C++ (using
Rcpp
and RcppArmadillo
). Additionally,
starting parameters are estimated using the double-centering approach,
and the means of the observed variables are used to generate good
starting parameters for faster convergence. If you want to monitor the
progress of the estimation process, you can use
verbose = TRUE
.
A Simple Example
Here is an example of the LMS
approach for a simple
model. By default, the summary()
function calculates fit
measures compared to a null model (i.e., the same model without an
interaction term).
library(modsem)
m1 <- '
# Outer Model
X =~ x1
X =~ x2 + x3
Z =~ z1 + z2 + z3
Y =~ y1 + y2 + y3
# Inner Model
Y ~ X + Z
Y ~ X:Z
'
lms1 <- modsem(m1, oneInt, method = "lms")
summary(lms1, standardized = TRUE) # Standardized estimates
#>
#> modsem (version 1.0.4):
#> Estimator LMS
#> Optimization method EM-NLMINB
#> Number of observations 2000
#> Number of iterations 84
#> Loglikelihood -14687.86
#> Akaike (AIC) 29437.72
#> Bayesian (BIC) 29611.35
#>
#> Numerical Integration:
#> Points of integration (per dim) 24
#> Dimensions 1
#> Total points of integration 24
#>
#> Fit Measures for H0:
#> Loglikelihood -17832
#> Akaike (AIC) 35723.75
#> Bayesian (BIC) 35891.78
#> Chi-square 17.52
#> Degrees of Freedom (Chi-square) 24
#> P-value (Chi-square) 0.826
#> RMSEA 0.000
#>
#> Comparative fit to H0 (no interaction effect)
#> Loglikelihood change 3144.01
#> Difference test (D) 6288.02
#> Degrees of freedom (D) 1
#> P-value (D) 0.000
#>
#> R-Squared:
#> Y 0.596
#> R-Squared Null-Model (H0):
#> Y 0.395
#> R-Squared Change:
#> Y 0.201
#>
#> Parameter Estimates:
#> Coefficients standardized
#> Information expected
#> Standard errors standard
#>
#> Latent Variables:
#> Estimate Std.Error z.value P(>|z|)
#> X =~
#> x1 0.926
#> x2 0.891 0.020 45.23 0.000
#> x3 0.912 0.015 62.37 0.000
#> Z =~
#> z1 0.927
#> z2 0.898 0.016 55.97 0.000
#> z3 0.913 0.014 64.52 0.000
#> Y =~
#> y1 0.969
#> y2 0.954 0.011 85.43 0.000
#> y3 0.961 0.011 88.71 0.000
#>
#> Regressions:
#> Estimate Std.Error z.value P(>|z|)
#> Y ~
#> X 0.427 0.025 17.21 0.000
#> Z 0.370 0.025 14.98 0.000
#> X:Z 0.453 0.020 22.46 0.000
#>
#> Covariances:
#> Estimate Std.Error z.value P(>|z|)
#> X ~~
#> Z 0.199 0.032 6.27 0.000
#>
#> Variances:
#> Estimate Std.Error z.value P(>|z|)
#> x1 0.142 0.009 15.38 0.000
#> x2 0.206 0.010 19.89 0.000
#> x3 0.169 0.009 19.18 0.000
#> z1 0.141 0.008 16.74 0.000
#> z2 0.193 0.011 17.18 0.000
#> z3 0.167 0.009 18.54 0.000
#> y1 0.061 0.004 16.78 0.000
#> y2 0.090 0.005 20.01 0.000
#> y3 0.077 0.004 18.39 0.000
#> X 1.000 0.039 25.86 0.000
#> Z 1.000 0.051 19.55 0.000
#> Y 0.404 0.018 21.94 0.000
Here is the same example using the QML
approach:
qml1 <- modsem(m1, oneInt, method = "qml")
summary(qml1)
#>
#> modsem (version 1.0.4):
#> Estimator QML
#> Optimization method NLMINB
#> Number of observations 2000
#> Number of iterations 109
#> Loglikelihood -17496.22
#> Akaike (AIC) 35054.43
#> Bayesian (BIC) 35228.06
#>
#> Fit Measures for H0:
#> Loglikelihood -17832
#> Akaike (AIC) 35723.75
#> Bayesian (BIC) 35891.78
#> Chi-square 17.52
#> Degrees of Freedom (Chi-square) 24
#> P-value (Chi-square) 0.826
#> RMSEA 0.000
#>
#> Comparative fit to H0 (no interaction effect)
#> Loglikelihood change 335.66
#> Difference test (D) 671.32
#> Degrees of freedom (D) 1
#> P-value (D) 0.000
#>
#> R-Squared:
#> Y 0.607
#> R-Squared Null-Model (H0):
#> Y 0.395
#> R-Squared Change:
#> Y 0.211
#>
#> Parameter Estimates:
#> Coefficients unstandardized
#> Information observed
#> Standard errors standard
#>
#> Latent Variables:
#> Estimate Std.Error z.value P(>|z|)
#> X =~
#> x1 1.000
#> x2 0.803 0.013 63.96 0.000
#> x3 0.914 0.013 67.79 0.000
#> Z =~
#> z1 1.000
#> z2 0.810 0.012 65.12 0.000
#> z3 0.881 0.013 67.62 0.000
#> Y =~
#> y1 1.000
#> y2 0.798 0.007 107.58 0.000
#> y3 0.899 0.008 112.55 0.000
#>
#> Regressions:
#> Estimate Std.Error z.value P(>|z|)
#> Y ~
#> X 0.674 0.032 20.94 0.000
#> Z 0.566 0.030 18.96 0.000
#> X:Z 0.712 0.028 25.45 0.000
#>
#> Intercepts:
#> Estimate Std.Error z.value P(>|z|)
#> x1 1.023 0.024 42.89 0.000
#> x2 1.216 0.020 60.99 0.000
#> x3 0.919 0.022 41.48 0.000
#> z1 1.012 0.024 41.58 0.000
#> z2 1.206 0.020 59.27 0.000
#> z3 0.916 0.022 42.06 0.000
#> y1 1.038 0.033 31.46 0.000
#> y2 1.221 0.027 45.49 0.000
#> y3 0.955 0.030 31.86 0.000
#> Y 0.000
#> X 0.000
#> Z 0.000
#>
#> Covariances:
#> Estimate Std.Error z.value P(>|z|)
#> X ~~
#> Z 0.200 0.024 8.24 0.000
#>
#> Variances:
#> Estimate Std.Error z.value P(>|z|)
#> x1 0.158 0.009 18.14 0.000
#> x2 0.162 0.007 23.19 0.000
#> x3 0.165 0.008 20.82 0.000
#> z1 0.166 0.009 18.34 0.000
#> z2 0.159 0.007 22.62 0.000
#> z3 0.158 0.008 20.71 0.000
#> y1 0.159 0.009 17.98 0.000
#> y2 0.154 0.007 22.67 0.000
#> y3 0.164 0.008 20.71 0.000
#> X 0.983 0.036 27.00 0.000
#> Z 1.019 0.038 26.95 0.000
#> Y 0.943 0.038 24.87 0.000
A More Complicated Example
Below is an example of a more complex model based on the theory of
planned behavior (TPB), which includes two endogenous variables and an
interaction between an endogenous and exogenous variable. When
estimating more complex models with the LMS
approach, it is
recommended to increase the number of nodes used for numerical
integration. By default, the number of nodes is set to 16, but this can
be increased using the nodes
argument. The
nodes
argument has no effect on the QML
approach.
When there is an interaction effect between an endogenous and
exogenous variable, it is recommended to use at least 32 nodes for the
LMS
approach. You can also obtain robust standard errors by
setting robust.se = TRUE
in the modsem()
function.
Note: If you want the LMS
approach to
produce results as similar as possible to Mplus, you should increase the
number of nodes (e.g., nodes = 100
).
# ATT = Attitude
# PBC = Perceived Behavioral Control
# INT = Intention
# SN = Subjective Norms
# BEH = Behavior
tpb <- '
# Outer Model (Based on Hagger et al., 2007)
ATT =~ att1 + att2 + att3 + att4 + att5
SN =~ sn1 + sn2
PBC =~ pbc1 + pbc2 + pbc3
INT =~ int1 + int2 + int3
BEH =~ b1 + b2
# Inner Model (Based on Steinmetz et al., 2011)
INT ~ ATT + SN + PBC
BEH ~ INT + PBC
BEH ~ INT:PBC
'
lms2 <- modsem(tpb, TPB, method = "lms", nodes = 32)
summary(lms2)
#>
#> modsem (version 1.0.4):
#> Estimator LMS
#> Optimization method EM-NLMINB
#> Number of observations 2000
#> Number of iterations 64
#> Loglikelihood -23439.2
#> Akaike (AIC) 46986.41
#> Bayesian (BIC) 47288.85
#>
#> Numerical Integration:
#> Points of integration (per dim) 32
#> Dimensions 1
#> Total points of integration 32
#>
#> Fit Measures for H0:
#> Loglikelihood -26393
#> Akaike (AIC) 52892.45
#> Bayesian (BIC) 53189.29
#> Chi-square 66.27
#> Degrees of Freedom (Chi-square) 82
#> P-value (Chi-square) 0.897
#> RMSEA 0.000
#>
#> Comparative fit to H0 (no interaction effect)
#> Loglikelihood change 2954.02
#> Difference test (D) 5908.04
#> Degrees of freedom (D) 1
#> P-value (D) 0.000
#>
#> R-Squared:
#> INT 0.364
#> BEH 0.259
#> R-Squared Null-Model (H0):
#> INT 0.367
#> BEH 0.210
#> R-Squared Change:
#> INT -0.003
#> BEH 0.049
#>
#> Parameter Estimates:
#> Coefficients unstandardized
#> Information expected
#> Standard errors standard
#>
#> Latent Variables:
#> Estimate Std.Error z.value P(>|z|)
#> PBC =~
#> pbc1 1.000
#> pbc2 0.914 0.016 56.88 0.000
#> pbc3 0.802 0.019 42.46 0.000
#> ATT =~
#> att1 1.000
#> att2 0.878 0.018 48.90 0.000
#> att3 0.789 0.020 38.88 0.000
#> att4 0.695 0.017 39.78 0.000
#> att5 0.887 0.025 35.40 0.000
#> SN =~
#> sn1 1.000
#> sn2 0.889 0.026 34.77 0.000
#> INT =~
#> int1 1.000
#> int2 0.913 0.024 38.27 0.000
#> int3 0.807 0.021 37.67 0.000
#> BEH =~
#> b1 1.000
#> b2 0.959 0.053 18.16 0.000
#>
#> Regressions:
#> Estimate Std.Error z.value P(>|z|)
#> INT ~
#> PBC 0.217 0.044 4.99 0.000
#> ATT 0.214 0.045 4.70 0.000
#> SN 0.176 0.037 4.76 0.000
#> BEH ~
#> PBC 0.233 0.034 6.89 0.000
#> INT 0.188 0.034 5.54 0.000
#> PBC:INT 0.205 0.028 7.26 0.000
#>
#> Intercepts:
#> Estimate Std.Error z.value P(>|z|)
#> pbc1 0.991 0.033 29.69 0.000
#> pbc2 0.978 0.031 31.84 0.000
#> pbc3 0.986 0.026 37.25 0.000
#> att1 1.009 0.035 28.79 0.000
#> att2 1.003 0.028 36.28 0.000
#> att3 1.013 0.026 39.12 0.000
#> att4 0.996 0.024 41.35 0.000
#> att5 0.988 0.029 34.35 0.000
#> sn1 1.001 0.035 28.26 0.000
#> sn2 1.006 0.032 31.06 0.000
#> int1 1.011 0.025 40.02 0.000
#> int2 1.009 0.028 35.44 0.000
#> int3 1.003 0.024 42.07 0.000
#> b1 0.999 0.022 44.65 0.000
#> b2 1.017 0.025 40.83 0.000
#> INT 0.000
#> BEH 0.000
#> PBC 0.000
#> ATT 0.000
#> SN 0.000
#>
#> Covariances:
#> Estimate Std.Error z.value P(>|z|)
#> PBC ~~
#> ATT 0.668 0.048 13.93 0.000
#> SN 0.668 0.047 14.09 0.000
#> ATT ~~
#> SN 0.623 0.050 12.46 0.000
#>
#> Variances:
#> Estimate Std.Error z.value P(>|z|)
#> pbc1 0.148 0.012 12.55 0.000
#> pbc2 0.159 0.010 15.80 0.000
#> pbc3 0.155 0.010 16.29 0.000
#> att1 0.167 0.010 16.68 0.000
#> att2 0.150 0.009 17.13 0.000
#> att3 0.159 0.009 18.03 0.000
#> att4 0.162 0.008 20.20 0.000
#> att5 0.159 0.010 16.69 0.000
#> sn1 0.178 0.022 8.20 0.000
#> sn2 0.156 0.016 9.89 0.000
#> int1 0.157 0.011 13.91 0.000
#> int2 0.160 0.011 14.28 0.000
#> int3 0.168 0.010 17.38 0.000
#> b1 0.185 0.036 5.11 0.000
#> b2 0.136 0.028 4.82 0.000
#> PBC 0.947 0.052 18.33 0.000
#> ATT 0.992 0.063 15.66 0.000
#> SN 0.981 0.060 16.35 0.000
#> INT 0.491 0.029 16.94 0.000
#> BEH 0.456 0.031 14.70 0.000
qml2 <- modsem(tpb, TPB, method = "qml")
summary(qml2, standardized = TRUE) # Standardized estimates
#>
#> modsem (version 1.0.4):
#> Estimator QML
#> Optimization method NLMINB
#> Number of observations 2000
#> Number of iterations 75
#> Loglikelihood -26326.25
#> Akaike (AIC) 52760.5
#> Bayesian (BIC) 53062.95
#>
#> Fit Measures for H0:
#> Loglikelihood -26393
#> Akaike (AIC) 52892.45
#> Bayesian (BIC) 53189.29
#> Chi-square 66.27
#> Degrees of Freedom (Chi-square) 82
#> P-value (Chi-square) 0.897
#> RMSEA 0.000
#>
#> Comparative fit to H0 (no interaction effect)
#> Loglikelihood change 66.97
#> Difference test (D) 133.95
#> Degrees of freedom (D) 1
#> P-value (D) 0.000
#>
#> R-Squared:
#> INT 0.366
#> BEH 0.263
#> R-Squared Null-Model (H0):
#> INT 0.367
#> BEH 0.210
#> R-Squared Change:
#> INT 0.000
#> BEH 0.053
#>
#> Parameter Estimates:
#> Coefficients standardized
#> Information observed
#> Standard errors standard
#>
#> Latent Variables:
#> Estimate Std.Error z.value P(>|z|)
#> PBC =~
#> pbc1 0.933
#> pbc2 0.913 0.013 69.47 0.000
#> pbc3 0.894 0.014 66.10 0.000
#> ATT =~
#> att1 0.925
#> att2 0.915 0.013 71.56 0.000
#> att3 0.892 0.013 66.37 0.000
#> att4 0.865 0.014 61.00 0.000
#> att5 0.912 0.013 70.85 0.000
#> SN =~
#> sn1 0.921
#> sn2 0.913 0.017 52.61 0.000
#> INT =~
#> int1 0.912
#> int2 0.895 0.015 59.05 0.000
#> int3 0.867 0.016 55.73 0.000
#> BEH =~
#> b1 0.877
#> b2 0.900 0.028 31.71 0.000
#>
#> Regressions:
#> Estimate Std.Error z.value P(>|z|)
#> INT ~
#> PBC 0.243 0.033 7.35 0.000
#> ATT 0.242 0.030 8.16 0.000
#> SN 0.199 0.031 6.37 0.000
#> BEH ~
#> PBC 0.289 0.028 10.37 0.000
#> INT 0.212 0.028 7.69 0.000
#> PBC:INT 0.227 0.020 11.33 0.000
#>
#> Covariances:
#> Estimate Std.Error z.value P(>|z|)
#> PBC ~~
#> ATT 0.692 0.030 23.45 0.000
#> SN 0.695 0.030 23.07 0.000
#> ATT ~~
#> SN 0.634 0.029 21.70 0.000
#>
#> Variances:
#> Estimate Std.Error z.value P(>|z|)
#> pbc1 0.130 0.007 18.39 0.000
#> pbc2 0.166 0.008 21.43 0.000
#> pbc3 0.201 0.008 23.89 0.000
#> att1 0.144 0.006 23.53 0.000
#> att2 0.164 0.007 24.71 0.000
#> att3 0.204 0.008 26.38 0.000
#> att4 0.252 0.009 27.64 0.000
#> att5 0.168 0.007 24.93 0.000
#> sn1 0.153 0.013 12.09 0.000
#> sn2 0.167 0.013 13.26 0.000
#> int1 0.168 0.009 18.11 0.000
#> int2 0.199 0.010 20.41 0.000
#> int3 0.249 0.011 23.55 0.000
#> b1 0.231 0.023 10.12 0.000
#> b2 0.191 0.024 8.11 0.000
#> PBC 1.000 0.037 27.07 0.000
#> ATT 1.000 0.037 26.93 0.000
#> SN 1.000 0.040 25.22 0.000
#> INT 0.634 0.026 24.64 0.000
#> BEH 0.737 0.037 20.17 0.000