Predict From modsem Models
      modsem_predict.RdA generic function (and corresponding methods) that produces predicted
values or factor scores from modsem models.
Usage
modsem_predict(object, ...)
# S3 method for class 'modsem_da'
modsem_predict(
  object,
  standardized = FALSE,
  H0 = TRUE,
  newdata = NULL,
  center.data = TRUE,
  ...
)
# S3 method for class 'modsem_pi'
modsem_predict(object, ...)Arguments
- object
 modsem_daobject- ...
 Further arguments passed to
lavaan::predict; currently ignored by themodsem_damethod.- standardized
 Logical. If
TRUE, return standardized factor scores.- H0
 Logical. If
TRUE(default), use the baseline model to compute factor scores. IfFALSE, use the model specified inobject. UsingH0 = FALSEis not recommended!- newdata
 Compute factor scores based on a different dataset, than the one used in the model estimation.
- center.data
 Should data be centered before computing factor scores? Default is
TRUE.
Value
* For modsem_pi: whatever lavaan::predict(), which usually
  returns a matrix of factor scores.
* For modsem_da: a numeric matrix \(n \times p\), where \(n\) is the number of
  (complete) observations in the dataset, and \(p\) the number of latent variables. Each
  column contains either raw or standardised factor scores, depending on the
  standardized argument.
Methods (by class)
modsem_predict(modsem_da): Computes (optionally standardised) factor scores via the regression method using the baseline model unlessH0 = FALSE.modsem_predict(modsem_pi): Wrapper forlavaan::predict
Examples
m1 <- '
# Outer Model
  X =~ x1 + x2 + x3
  Z =~ z1 + z2 + z3
  Y =~ y1 + y2 + y3
# Inner Model
  Y ~ X + Z + X:Z
'
est_dca <- modsem(m1, oneInt, method = "dblcent")
head(modsem_predict(est_dca))
#>               X           Z           Y         XZ
#> [1,]  0.7335391  0.06120326  0.05047257 -0.2208065
#> [2,] -0.6821195  2.18041524 -0.88082672 -1.8387785
#> [3,] -1.7943935  0.51493114 -1.93045740 -1.1061514
#> [4,]  1.3702391  2.15235456  5.01851357  2.8293527
#> [5,]  1.7397838 -0.87027404  0.80814709 -1.6768080
#> [6,] -1.7169401 -0.86698974 -0.34724128  1.3455015
# \dontrun{
est_lms <- modsem(m1, oneInt, method = "lms")
head(modsem_predict(est_lms))
#>            X           Z           Y
#> 1  0.7980664  0.06766337  0.03152707
#> 2 -0.7424647  2.36034558 -0.89907069
#> 3 -1.9141728  0.58633881 -1.95369573
#> 4  1.3947779  2.23652498  5.08213669
#> 5  1.8146304 -0.99632557  0.89884045
#> 6 -1.8390114 -0.92032081 -0.31852536
# }